Women’s Susceptibility to Tobacco Carcinogens and Survival After Diagnosis of Lung Cancer

Context It has been hypothesized that women are more susceptible to tobacco carcinogens than men, but after diagnosis of lung cancer, they have better survival rates than men.

Objective To add to the evidence on the lung cancer risk of women who smoke and their survival after diagnosis of lung cancer, conditional on other prognostic indicators and compared with men of the same age who smoke.

Design, Setting, and Participants Nonexperimental, etiologic study with prospective collection of data based on baseline computed tomographic screening for lung cancer and follow-up of diagnosed cases of lung cancer in North America in 1993-2005. A total of 7498 women and 9427 men were screened, all of whom were asymptomatic, aged at least 40 years, and had a history of cigarette smoking.

Main Outcome Measures Comparing women with men, the prevalence odds ratio (OR) for screen-detectable lung cancer (conditional on age and smoking history) and the hazard ratio of fatal outcome of lung cancer (conditional on smoking history, disease stage, tumor cell type, and resection).

Results Lung cancer was diagnosed in 156 women and 113 men (rates of 2.1% and 1.2%, respectively). The prevalence OR comparing women with men was 1.9 (95% confidence interval [CI], 1.5-2.5). The hazard ratio of fatal outcome of lung cancer comparing women with men was 0.48 (95% CI, 0.25-0.89).

Conclusion Women appear to have increased susceptibility to tobacco carcinogens but have a lower rate of fatal outcome of lung cancer compared with men.

METHODS
In our previous report, we addressed the risk for lung cancer in 1202 women and 1288 men using New York City data undergoing baseline screening at Joan and Sanford I. Weill Medical College of Cornell University in 1993-1999 (series 1). This report is based on a new
series of 14,435 persons (6296 women and 8139 men) undergoing baseline CT screening for lung cancer in North America in 1999-2005 (series 2), and also on both series combined (7498 women and 9427 men). The comparison of women with men as to fatal outcome of cancer is based on cases from both screening series combined.

All of the screenees were asymptomatic volunteers with no history of cancer (other than nonmelanotic skin cancer) and fit to undergo thoracic surgery, were at least 40 years of age, and were past or current cigarette smokers. All of the participants gave informed consent for baseline and repeat screenings under institutional review board-approved protocols. The cohorts’ distributions by age and history of smoking are shown in Table 1.

Information about smoking history was recorded at the time of the initial CT baseline screening. Participants were asked about the following by an interviewer: the age at which habitual smoking began and whether the habit had continued to the last month; if smoking had continued, the daily number of cigarettes smoked in that month; and if smoking had not continued, the typical number of cigarettes smoked per day and the duration of the smoking history. Pack-years of smoking was calculated as the product of the number of cigarettes smoked per day divided by 20 and the number of years of smoking.

The protocol specified a diagnostic workup following a positive result of the initial low-dose CT, ie, the identification of a specified pattern of noncalcified nodules. Although updated since our prior report, this workup has remained essentially unchanged in its indications for biopsy: demonstration of tumor growth on the CT scan, positive positron emission tomographic scan result, or CT 1 month after the initial scan not showing resolution after antibiotic treatment; for nodules 15 mm or more in diameter, immediate biopsy was an option. A nodule’s diameter was calculated as the average of its length and width in the image showing its largest cross-section in the CT scan closest to the time of diagnosis.

The consensus diagnoses by a panel of 5 experts on lung pathology, following the I-ELCAP pathology protocol based on the 2004 World Health Organization criteria, are used in this article. For patients undergoing resection, diagnoses were based on the histology of the surgical specimens; for other patients, diagnoses were based on the cytology of the biopsy specimens.

The women vs men incidence density ratio for lung cancer was the ratio of the corresponding prevalence odds ratio (OR) (cancer present vs cancer absent), conditional on age and history of smoking. In logistic regression analysis to test the independent effect of patient sex after accounting for pack-years of smoking at time of diagnosis, clinical stage of the disease (I, II+), cell type (adenocarcinoma, other non–small cell, small/ large cell), and resection (yes, no).

All statistical analyses were performed using the SAS version 8.2 (SAS Institute Inc, Cary, NC) statistical package.

RESULTS

In the new series of 14,435 baseline screenings, lung cancer was diagnosed in 111 of 6296 women and 93 of 8139 men. Thus, for the crude women vs men prevalence OR, the point estimate was 1.6 (111/[6296 – 111]/[93/(8139 – 93)]; P=.001, 1-sided). Table 2 shows the corresponding result from the logistic regression discrimination between the case (N=204) and the noncase (N=14,231 [14,435 – 204]) series, and also the result when controlling for age and pack-years of cigarette smoking. The OR for age and smoking was 1.7 (95% confidence interval [CI], 1.3–2.3). Combining the 2 series of baseline screenings, lung cancer was diagnosed in 269 cases.
Table 2. Logistic Regression Analysis of 14 435 Baseline Screenings for Lung Cancer, Prevalence Odds Ratio, Women vs Men by Controlled Covariates

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Coefficient (SE)</th>
<th>Odds Ratio (95% CI) Estimate</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.44 (0.14)</td>
<td>1.6 (1.2-2.0)</td>
<td>.002</td>
</tr>
<tr>
<td>Age and smoking</td>
<td>0.54 (0.14)</td>
<td>1.7 (1.3-2.3)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval.
*Coefficient of sex indicator: 1 if female, 0 otherwise.
†Two-sided.

Table 3. Distributions of Women and Men With Baseline Diagnosis of Lung Cancer According to Age, History of Smoking at Time of Diagnosis, Clinical Stage I of the Disease, and Resection

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Women (n = 156)</th>
<th>Men (n = 113)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range), y</td>
<td>67 (47-84)</td>
<td>68 (49-83)</td>
</tr>
<tr>
<td>Pack-years of smoking, median (range), No.</td>
<td>47 (2-125)</td>
<td>64 (9-136)</td>
</tr>
<tr>
<td>Stage</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Women</td>
<td>139 (89)</td>
<td>64 (42)</td>
</tr>
<tr>
<td>Men</td>
<td>90 (80)</td>
<td>53 (47)</td>
</tr>
</tbody>
</table>

Table 4. Distributions of Cases of Baseline Diagnosis of Lung Cancer by Tumor Diameter

<table>
<thead>
<tr>
<th>Tumor Diameter, mm</th>
<th>Women (n = 156)</th>
<th>Men (n = 113)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>17 (11)</td>
<td>10 (9)</td>
</tr>
<tr>
<td>10-20</td>
<td>103 (66)</td>
<td>69 (61)</td>
</tr>
<tr>
<td>>20</td>
<td>36 (23)</td>
<td>34 (30)</td>
</tr>
</tbody>
</table>

The combined women vs men prevalence OR estimate, when controlling for age and pack-years of cigarette smoking, was 1.9 (95% CI, 1.5-2.5).

COMMENT

Following up on our previous study, the findings reported herein again indicate that the risk of lung cancer is higher in women who smoke than in men of the same age who smoke the same amount.

The diagnoses were initially derived in the institutions in which the screen-ees were cared for, but in 222 of the 269 cases, the pathology specimens were independently reviewed by an expert panel of pulmonary pathologists. This panel confirmed all of the 222 cases as representing lung cancer, changing only the cell-type particulars in some of them. The low proportions of squamous and small cell carcinomas among the diagnosed cases were to be expected, as baseline screening less commonly leads to the detection of relatively fast-growing types, and also because there has been a shift to adenocarcinoma in cancer registry data in the United States and elsewhere.

Our results also raise other questions. First, could the pursuit of malignancy diagnosis have been more vigorous with women screenees? We see no reason to presume this: not only was the diagnostic protocol the same for the 2 sexes, but its recommendations were followed equally. Had the reading of the images been biased in favor of more common nodule detection in the women, this would have accentuated the frequency of relatively small tumors among the diagnosed cases in the women (being that relatively small nodules are less readily detectable), but the proportions of tumors under 10 mm in diameter were quite similar for women and men (0.11 [17/156] vs 0.09 [10/113], respectively).

Second, could women more commonly have presented themselves for screening on the prompting not merely of risk, but also the presence of cancersuggestive symptoms? Again, we see no reason to presume this. Nevertheless, if this was the case, the largest tumors would have been relatively more common in the cases diagnosed in the women (as larger cancers are more likely to be symptomatic). But the proportion of tumors more than 20 mm in diameter was actually lower in the women than in the men (0.23 [36/156] vs 0.30 [34/113], respectively). Thus, insofar as some of the diagnosed cases actually were symptomatic and differentially so between the sexes, this again more likely diluted rather than accentuated the apparent role of patient sex.

Third, could the higher prevalence of detected cancer in women have resulted from a generally lesser aggressiveness—lower rate of growth—of the women’s cancers compared with those of the men? Referring to Table 5, we note that for the slowest-growing malignancies, typical carcinoids and adenocarcinomas of the bronchioloalveolar subtype, the proportions in women’s and men’s cases were 6% (9/156) and 4% (5/113), respectively. Also, for the fastest-growing type, small cell carcino...
noma, the corresponding proportions were 3% (4/156) and 11% (12/113), respectively. The degree of aggressiveness of the women's cancers thus tended to be slightly lower than that of the men's. But if in 10% of the women's cases the growth rate was, for example, one half of that in the men's cases, this would have made the prevalence OR (incidence density) no higher than 1.1. Table 5 clearly indicates that insofar as a given level of smoking causes lung cancer more commonly in women than in men, the excess cases are principally adenocarcinomas, as has been shown in other studies.9,13,15

The hypothesis that women may be more susceptible to tobacco carcinogens is biologically plausible.32,33 While evidence from some epidemiologic cohort studies does not substantiate this idea,10-12 a subsequent study based on the national SEER registry9 again suggested the increased susceptibility of women. If additional studies add supporting evidence, the notion of women's susceptibility to tobacco carcinogens warrants serious consideration.

If lung cancer risk for women who smoke is indeed higher than the risk for men of the same age who smoke, as indicated by the evidence presented here, this suggests that antismoking efforts directed toward girls and women need to be even more serious than those directed toward boys and men. In the same vein, insofar as screening for lung cancer is practiced among smokers, female sex calls for screening at lower levels of smoking history than the corresponding indication threshold in men. Specifically, if men of a given age are to be screened if the number of pack-years of past smoking is at least X, the regression analysis of the 2 screening series combined suggests that the corresponding threshold for women would be X−0.662/0.0138=X−48 pack-years, where 0.662 and 0.0138 are the fitted coefficients of the indicator of female sex and pack-years of smoking; that is, that the screening threshold for women of a given age should be 50 pack-years lower than that for men of the same age.

Table 5. Cell Type Distribution of the Diagnosed Cases of Lung Cancer

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Women (n = 156)</th>
<th>Men (n = 113)</th>
<th>Total (N=269)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoïd, typical</td>
<td>6 (4)</td>
<td>1 (1)</td>
<td>7 (3)</td>
</tr>
<tr>
<td>Adenocarcinoma (bronchioloalveolar)</td>
<td>3 (2)</td>
<td>4 (4)</td>
<td>7 (3)</td>
</tr>
<tr>
<td>Adenocarcinoma (other)</td>
<td>111 (71)</td>
<td>63 (56)</td>
<td>174 (64)</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>22 (14)</td>
<td>19 (17)</td>
<td>41 (15)</td>
</tr>
<tr>
<td>Non–small cell carcinoma, NOS</td>
<td>3 (2)</td>
<td>6 (5)</td>
<td>9 (3)</td>
</tr>
<tr>
<td>Carcinoid, atypical</td>
<td>2 (1)</td>
<td>0</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Large cell carcinoma</td>
<td>5 (3)</td>
<td>4 (3)</td>
<td>9 (3)</td>
</tr>
<tr>
<td>Small cell carcinoma</td>
<td>4 (3)</td>
<td>12 (11)</td>
<td>16 (6)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>4 (3)</td>
<td>4 (2)</td>
</tr>
</tbody>
</table>

Abbreviation: NOS, not otherwise specified.

Table 6. Multivariate Cox Regression Analysis of 269 Baseline Diagnosed Cases of Lung Cancer for the Hazard Ratio of Fatal Outcome, Women vs Men by Controlled Covariates *

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Coefficient (SE)*</th>
<th>Hazard Ratio (95%CI)</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>−1.12 (0.31)</td>
<td>0.33 (0.18-0.61)</td>
<td><.001</td>
</tr>
<tr>
<td>Smoking, stage, cell type, and resection</td>
<td>−0.75 (0.32)</td>
<td>0.48 (0.25-0.89)</td>
<td>.02</td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval.

*Coefficient of sex indicator: 1 if female, 0 otherwise.
†Two-sided.

It is well-established by the evidence accumulated over the past 20 years that women with lung cancer survive the disease better than men,13,12-20 and that this difference is more pronounced when the cancer is diagnosed at an early stage.18-20 Cancer stage at diagnosis, cell type, or treatment do not appear to be entirely explanatory of this difference.21 As 85% (229/269) of the cases considered here were clinical stage I at diagnosis, the fatality hazard ratio in favor of women, conditional for pack-years of smoking, disease stage, tumor cell type, and resection was more pronounced than those reported by others.22 Despite the conditionality, it is not clear whether this survival difference is because lung cancer in women tends to be more commonly curable or less malignant. If lung cancer is more commonly curable in women, then the need to screen women at a lower threshold than men is warranted. If lung cancer is less malignant in women, there may be less need to screen women at a lower threshold.

Author/Writing Committee Affiliations: Department of Radiology (Dr Henschke and Ms Yip), Department of Medicine (Dr Miettinen), Joan and Sanford I. Weill Medical College of Cornell University, New York, NY; Department of Epidemiology and Biostatistics and Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec (Dr Miettinen).

Author Contributions: Dr Henschke had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Henschke, Miettinen.

Acquisition of data: Henschke.

Analysis and interpretation of data: Henschke, Miettinen, Yip.

Drafting of the manuscript: Henschke, Miettinen, Yip.

Critical revision of the manuscript for important intellectual content: Henschke, Miettinen.

Statistical analysis: Henschke, Miettinen, Yip.

Administrative, technical, or material support: Henschke.

Study supervision: Henschke.

Financial Disclosures: None reported.

The I-ELCAP Investigators: Joan & Sanford I. Weill Medical College of Cornell University, New York, NY: Claudia I. Henschke, Principal Investigator, David F. Yankelevitz, Dorothy I. McCauley, Albert Miller, Azumi General Hospital, Nagano, Japan; Shusuke Sone, Takaomi Hanaoka; CNBNS, City University of New York at Queens College, Queens, NY: Steven Markowitz, Alberto Miller, LungenZentrum Hirlanden, Zurich, Switzerland; Karl Klinger, Thomas Scherer, Rolf Inderbitz; Clinica Universitaria de Navarra, Pamplona, Spain: Javier Zulueta, Gorka Bastarrika, Maria D. Lozano; National Cancer Institute Regina Elena, Rome, Italy; Salvatore Giunta, Marcello Crecco, Patrizia Pugliese; H. Lee Moffitt Cancer Center & Research Institute, Tampa, Fla: Melvyn Tockman; Hassadath Medical Organization, Jerusalem, Israel: Dorith Shaham; Swedish Medical Center, Seattle, Wash: Kim Rice, Ralph Aye, University of Toronto, Princess Margaret Hospital, Toronto, Canada: Heidi Roberts, Demetris Patsios; Hebrew University- Hadassah Medical School, Jerusalem, Israel: Hannah Tockman; Princess Margaret Hospital, Toronto, Canada: Joan Houston, James Lally; Princess Margaret Hospital, Toronto, Canada: Mark H. Austin, Gregory D. N. Pearson; National Cancer Institute, New York, NY: David Naidich, Georgeanne McGuinness; State University of New York at Stony Brook, Stony Brook, NY.
WOMEN’S SUSCEPTIBILITY TO TOBACCO CARCINOGENS AND SURVIVAL AFTER LUNG CANCER DIAGNOSIS

Matthew Rifkin, Edward Fiore; Maimonides Medical Center, Brooklyn, NY; Samuel Kopel, Roswell Park Cancer Institute, Buffalo, NY; Donald Klippenstein, Alan Litwin, Peter A. Loud; State University of New York, Upstate Medical University, Syracuse, NY; Leslie J. Kohman, Ernest M. Scatlelli; North Shore-Long Island Jewish Health System, New Hyde Park, NY; Afa Khan, Rakesh Shah; Georgia Institute for Lung Cancer Research, Atlanta, GA; Michael V. Smith, Hadyn T. Williams, Louis Lovett; Mount Sinai School of Medicine, New York, NY; David S. Mendelson; Jackson Memorial Hospital, University of Miami, Miami, FL; Richard Thurer; Memorial Sloan-Kettering Cancer Center, New York, NY; Robert T. Heelan, Michelle S. Ginsberg; Holy Cross Hospital Cancer Institute, Silver Spring, MD; Frank Sullivan, Marlana Ottinger; Evanston Northwestern Healthcare Medical Group, Evanston, IL; Daniel Ray; Karmanos Cancer Institute, Detroit, Mich; Harvey Pass, Carmen Endress; Green-Wich Hospital, Greenwich, Conn; David Mullen; Sharp Memorial Hospital, San Diego, Calif; Michael Kalafat; City of Hope National Medical Center, Duarte, Calif; Fred Grann, Arnold Rotten; ProHealth Care Regional Cancer Center, Waukesha & Oconomowoc Medical Hospitals, Oconomowoc, Wis; M. Kristin Thoren; Richard Hansen; Comprehensive Cancer Center, Desert Regional Medical Center, Palm Springs, Calif; Elber Camacho; St Joseph Health Center, St Charles, Mo; Dan Ludue. Coordinating Center, Joan and Sanford I. Weill Medical College of Cornell University: Claudia I. Henschke, PhD, Principal Investigator; Nasser Altorki, MD, Ali Farooqui, MD, Jennifer Hess, MBA, Daniel Libby, MD, Dorothy I. McCauley, MD, Olli S. Miettinen, MD, PhD (also McGill University, Montreal, Canada), Jamie Ostroff, PhD (Memorial Sloan-Kettering Cancer Center), Mark W. Pasmanter, MD, Anthony P. Reeves, PhD (also Cornell University), James P. Smith, MD, Madeline Vazquez, MD, David F. Yancelevitz, MD, Rowena Yip, MPH, Kimberly Agnello, BS, Arin Kramer BS. Pathology Review Panel: Darryl Carter, MD, Chairman, Department of Pathology, Yale University School of Medicine, New Haven, Conn; Elizabeth Brambilla, MD, Department of Pathology, Centre Hospitalier Universitaire, Grenoble, France; Adi Gazdar, MD, Department of Pathology, University of Texas Southwestern Medical Center, Dallas; Masayuki Naguchi, MD, Department of Pathology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan; William D. Travis, MD, Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY.

REFERENCES

cate that for patients with dementia to qualify for hospice they must be at or beyond FAST stage 7 and be unable to ambulate independently. This effectively makes the cut-off stage 7c on the FAST scale.2

Susan L. Mitchell, MD, MPH
smitchell@hrca.harvard.edu
Hebrew SeniorLife
Boston, Massachusetts

Financial Disclosures: None reported.

CORRECTION

Unreported Financial Disclosures: In the Original Contribution entitled “Women’s Susceptibility to Tobacco Carcinogens and Survival After Diagnosis of Lung Cancer” published in the July 12, 2006, issue of JAMA (2006;296[2]:180-184) and in the Letter entitled “Computed tomography screening for lung cancer” published in the August 1, 2007, issue of JAMA (2007;298[5]:514-515), financial disclosures were not reported. See also related letter in this issue. The paragraph should have read as follows:

Research Support: The institutions that comprise I-ELCAP have received research support over the last 10 years from National Institutes of Health grants R01-CA-633931 and R01-CA-78909; Department of Energy grant DE-FG02-96SF21260; Department of Defense grant; The City of New York, Department of Health and Mental Hygiene; New York State Office of Science, Technology and Academic Research (NYSTAR); American Cancer Society; Israel Cancer Association; The Starr Foundation; The New York Community Trust; The Rogers Family Fund; The Foundation for Lung Cancer: Early Detection, Prevention, and Treatment (with funding from the Vector Group, the parent company of Liggett Tobacco); Foundation for Early Detection of Lung Cancer; Dorothy R. Cohen Foundation, Research Foundation of Clinic Hirslanden; Yad-Hanadiv Foundation; Jacob and Malka Goldfarb Charitable Foundation; Auen/Berger Foundation; Princess Margaret Foundation; Berger Foundation; Tenet Healthcare Foundation; Ernest E. Stempel Foundation, Academic Medical Development Corporation; Empire Blue Cross and Blue Shield; Weill Medical College of Cornell University; Cornell University; New York Presbyterian Hospital; Clinic Hirslanden; Swedish Hospital; Christiana Care Helen F. Graham Cancer Center; Holy Cross Hospital; Eisenhower Hospital; Jackson Memorial Hospital Health System, and Evanston Northwestern Healthcare.

Published Online: March 24, 2008 (doi:10.1001/jama.299.15.jcx80007).